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According to proponents, artificial intelligence (AI)—in par-
ticular generative AI (genAI)—will drastically increase our 
productivity and revolutionize the way we work. For instance, 
genAI is expected to complement or substitute humans in an 
increasing set of tasks (1). This forces individuals, firms, and 
policymakers to make important decisions about the use and 
regulation of genAI under major uncertainty. The stakes are 
high: genAI has become widely accessible through tools such 
as ChatGPT or Claude, directly complements human thinking 
(2), and holds the potential of becoming a general-purpose 
technology that can solve a wide variety of problems (3). 

Experimental and quasi-experimental evidence so far sup-
ports the notion that genAI has transformative potential, 
showing that the use of genAI leads to increases in produc-
tivity and output of individual workers in a variety of jobs (1, 
4–6). Surveys and data reported by large language model 
(LLM) owners suggest that these technologies are diffusing 
rapidly (7–9). Yet, estimates of the aggregate impact of AI on 
gross domestic product (GDP) and employment are often 
modest (10, 11), suggesting that we are far from having a clear 
picture of the overall impacts of AI. 

We do know that there is significant heterogeneity of 
adoption, which could lead to economic divergence. Although 
genAI use is widespread in the working age population, self-
reported adoption rates differ markedly across de-
mographics, seniority, work experience, and sectors (8, 9). Ev-
idence from job ads and firm websites suggests that adoption 
of genAI varies across geography (12, 13). If genAI indeed sub-
stantially raises productivity, any implied barriers to adop-
tion will have significant consequences for inequality within 
and across countries (14). Historically, however, macro-level 
productivity effects of general-purpose technologies, such as 
steam engines, dynamos, and computers, have taken long to 

materialize (4, 15–17). Together, this leads to substantial un-
certainty about the impact of genAI today. 

Resolving this uncertainty requires accurately determin-
ing adoption rates, intensity of use, and productivity effects 
at a global level. Surveys demonstrating demographic and 
sectoral heterogeneities in genAI adoption often focus on sin-
gle countries (8, 9). Previous work comparing AI adoption in 
different countries using survey data finds evidence of differ-
ences within and between countries (18), but differences in 
sample weighting and analysis periods of the surveys limit 
our ability to directly compare observed rates. In the context 
of genAI, respondents may under-report usage, especially at 
work, to avoid judgment (19, 20). Nevertheless, surveys pro-
vide a valuable resource for understanding adoption pat-
terns. Similarly, randomized controlled trials (RCTs) (1, 4–6, 
21) and natural experiments (22–24) are indispensable be-
cause they measure causal effects of genAI adoption by de-
sign. However, they typically consider individuals as 
“treated” whenever they have access to genAI tools, without 
quantifying the extent to which treated individuals used 
genAI during the experiments. Moreover, surveys and exper-
iments tend to observe individuals over short time periods, 
which limits our ability to know the dynamics of adoption 
and to observe effects of adoption that materialize more 
slowly. 

To begin to address these gaps, we ask if we can directly 
measure the adoption and intensity of use of genAI by indi-
viduals over time using machine learning instead of from 
self-reported information. If so, what do such measures tell 
us about the rate of adoption of genAI? Does this differ across 
countries and demographics? How does genAI impact the 
output individuals produce, and how do individual character-
istics such as experience moderate such effects? 
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To answer these questions, we study genAI use at a fine-
grained level in one of its main domains of application: soft-
ware development, an important and high-value sector (25, 
26) that is uniquely exposed to genAI (21, 22, 27, 28). To do 
so, we design and implement a machine learning classifier to 
identify code written with substantial AI assistance in over 
30 million software developer contributions, also known as 
commits, to open-source Python projects on GitHub. To train 
this classifier, we assemble a custom training set, combining 
existing sources with a procedure that generates synthetic 
training data. This allows us to analyze shifting patterns of 
AI-generated code at a granular level. We leverage this novel 
source of micro-data to study how quickly the use of genAI in 
coding diffuses in six major countries, how this diffusion re-
lates to demographic characteristics, and how it affects pro-
gramming activity in a sample of 100,097 US software 
developers. 
 
Detecting AI generated code 
To collect a large dataset of coding activity, we gather all com-
mits by 100,097 US GitHub users to Python-based open-
source projects, recursively cloning all GitHub directories re-
lated to each project. Next, we add commits from a random 
sample of 2,000 developers per year (60,000 developers in to-
tal) for each of five other major countries in software devel-
opment: China, France, Germany, India and Russia. We then 
analyze these commits to assess the prevalence of AI-
generated code (see materials and methods). 

Figure 1 describes how we classify these code contribu-
tions as either human or AI-generated. We limit this analysis 
to blocks of code that represent functions to focus on a fine-
grained, self-contained, yet substantive unit of code. We first 
construct a ground truth dataset (Fig. 1A), collecting Python 
functions of which we are certain they were written by a hu-
man programmer/developer. To do so, we take functions 
written in 2018, as they predate the release of capable genAI 
models. Because programming styles evolve over time, we 
add functions created in later years from the HumanEval da-
tasets for the years 2022 and 2024. To add a dataset of similar 
functions but written by genAI we apply a two-step proce-
dure. First, for each human-written function we ask one LLM 
to describe the function in English, specifying the type of in-
put and output of the function. Second, we feed this text to a 
second LLM and request the model to generate a function 
based on this description. Our use of two different LLMs —
unlike previous approaches (29)— avoids creating unneces-
sarily strong correlations between human code and its tran-
scription, while ensuring that the (synthetic) AI-generated 
functions in our training data are close in functionality to the 
original human-written functions. 

We then train a machine learning classifier on this da-
taset. Following (30), we transform each function using 

GraphCodeBert, a pre-trained language model for code that 
embeds a function into a high-dimensional vector space us-
ing its tokens, comments, and the dataflow graph of its vari-
ables (31). The resulting vectors are fed into a classifier to 
determine whether a given function was written by a human 
or by genAI (Fig. 1, B and C). 
 
Results 
The classifier performs remarkably well, achieving an out-of-
sample ROC AUC Score of 0.96 (Fig. 1D) and Average Rate of 
True positives of 0.95. We apply this classifier to 5 million 
functions extracted from 31 million contributions to Python 
projects from the beginning of 2019 to the end of 2024 for the 
full population of US-based users and the sampled users in 
the five other countries (Fig. 1D). In the supplementary ma-
terials (see supplementary materials, section S2), we show 
that the classifier also correctly identifies code generated by 
more recent LLMs introduced after our data collection ended, 
as well as code produced in real-world interactions with 
LLMs, albeit with somewhat lower accuracy. Retraining the 
classifier on code produced by these newer LLMs further im-
proves performance. 

Figure 2A plots the AI adoption trajectory for US develop-
ers. Adoption rates sharply increase following major AI ad-
vancements, including the launches of Copilot, ChatGPT, and 
second generation LLMs. Figure 2B compares the US to the 
five other major countries we cover in the global race toward 
AI adoption. This shows that the US took an early lead, which 
it has managed to maintain ever since. About 29% of Python 
functions in the US were generated by AI by the end of 2024, 
closely followed by 23/24% for Germany and France. India 
draws close at 20%, after having initially lagged in adoption. 
In contrast, Russia and China have so far remained late 
adopters. 

Focusing on the full population of US developers, we find 
that AI adoption rates drop with the number of years that 
developers have been active on GitHub. Figure 3B shows that 
whereas the most experienced developers use genAI in 27% 
of their code, developers who have just joined the GitHub 
platform use these tools for 37% of code. In contrast, using 
(self-reported) first-name-based gender inference algorithms, 
we find no difference between men and women (Fig. 3A). 

To assess how genAI impacts the quantity and nature of 
code that developers produce, we rely on regression models 
with user and quarter-of-year fixed effects. This compares the 
output — in terms of quarterly number of commits — of the 
same developer at different points in time, controlling for 
economy-wide trends. These models, summarized in Fig. 3C, 
suggest a substantial impact of genAI on developer produc-
tivity. We find consistent effects across different sets of com-
mits: all commits, commits that modify multiple files (which 
typically require navigating dependencies across scripts), and 
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commits that add new libraries (which typically introduce 
new functionality) to scripts. Moving from 0 to 29% genAI 
usage—the estimated US adoption rate by the end of 2024—
is associated with a 3.6% increase in commit rates across all 
these commit types. However, these associations with user 
productivity are fully driven by senior-level users, for whom 
a 29% adoption rate would imply a 6.2% increase in commit 
rates (Fig. 3D). In contrast, we observe no statistically signif-
icant effects among early-career users. 

Apart from increasing activity rates, AI adoption is also 
associated with increased experimentation with new libraries 
and combinations of libraries, which past research (32) inter-
preted as signs of innovation. Because libraries often focus on 
specific types of functionality — such as visualization, natural 
language processing, web interactions, or database opera-
tions — these findings suggest that genAI helps developers 
expand their capabilities to new domains of software devel-
opment. At average end-of-2024 AI use rates for US develop-
ers, our models predict that developers who use genAI at the 
average US end-of-2024 rate of 29% developers will imple-
ment 2.7% more extra new combinations of libraries. Results 
are robust to variations in how we identify new library intro-
ductions. It is unlikely that the observed effects are due to 
reflect the addition of esoteric libraries (“AI slop”): findings 
do not change much if we only use the 5,000 most common 
libraries or if we first group libraries into 124 coarse catego-
ries first. Moreover, fig. S6 of the supplementary materials 
(see section S4.5) shows that these effects, as well as the ear-
lier productivity effects, are likely lower bounds because er-
rors in the measurement of users’ AI adoption rates bias each 
of these estimates downwards. 
 
Discussion 
We set out to measure the use of genAI among software de-
velopers at the micro-level and on a global scale. Focusing on 
the software development labor force, we demonstrated how 
genAI has diffused and how this has affected the quantity and 
nature of code that developers produce. To do so, we devel-
oped a new genAI classifier to identify AI-generated func-
tions in GitHub commits. Applied to a large dataset covering 
software development activity across six major countries, we 
document noticeable growth spikes in genAI-generated code 
soon after key genAI releases. Yet, we also observe significant 
differences between countries: the United States leads but its 
advantage is narrowing, with Germany and France close be-
hind, India catching up fast, and China and Russia still lag-
ging at the end of 2024. Corroborating existing studies (8, 9), 
our estimated adoption rates are higher among early-career 
developers. However, unlike most previous work, we find no 
significant differences between men and women. 

We also find that genAI reshapes both the volume and na-
ture of programming work. Using within-developer 

variation—comparing the same developer before and after 
adopting genAI—we show that AI adoption substantially in-
creases output. Developers using genAI are also more likely 
to incorporate novel combinations of software libraries into 
their code, suggesting they venture into new technical do-
mains (32) using unfamiliar building blocks (33). However, 
both productivity and exploration gains concentrate almost 
exclusively among senior-level developers. In contrast, alt-
hough early-career developers used genAI more, they do not 
realize the same benefits. 

Our observations that early-career developers use AI more 
but get less out of it than their more experienced colleagues, 
may reflect differences in how well developers utilize genAI 
across a broader set of tasks. Senior-level developers will, for 
instance, be quicker to interpret, and spot mistakes in, AI-
generated code. Such an interpretation is supported by (22), 
who show that access to genAI allows senior developers to 
spend less time on coordination activities and more time on 
coding. 

Our findings both replicate and extend findings from 
other investigations. The current study estimates the most re-
cent adoption rates in the US at around 29%, which is re-
markably similar to adoption rates claimed for coding work 
at Microsoft (34) and Amazon (35). This shows that, despite 
our focus on code from open-source Python libraries, our re-
sults closely align with estimates of adoption rates from other 
contexts and may generalize beyond the specific setting of 
this study. 

Unlike most other studies, our methodological advances 
and design allow us to compare early adoption rates across 
countries. Here, we find a clear and sustained lead by US de-
velopers. Use of LLMs may be lower in countries like China 
and Russia because of differences in their supply of (provid-
ers such as OpenAI and Anthropic block access) and differ-
ences in demand (censorship limits local use, even though 
many users connect using VPNs (36)). However, other major 
countries are quickly catching up, eroding the US’ first-mover 
advantage. Another feature that sets our study apart is that 
existing literature typically focuses on access to genAI — 
yielding reduced-form estimates of the causal effect of the so-
called intention-to-treat, not of genAI itself — or usage in con-
trolled experimental settings. In contrast, our approach al-
lows us to quantify the intensity with which this new 
technology is used in real-world work activities. Finally, we 
note that our cross-country evidence on genAI use comple-
ments firm-level survey work on broader AI adoption which 
extends back to before the genAI era (18); while levels are not 
directly comparable, both perspectives document persistent 
cross-country gaps in AI use. 

With respect to the productivity effects of genAI, our esti-
mates are generally smaller than those found in RCTs (6, 37) 
and studies exploiting natural experiments (22, 24). In 
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robustness checks (supplementary materials, section S4) we 
study whether nonlinearities or threshold effects in the ben-
efits of genAI adoption can explain such discrepancies, but 
find little evidence for this hypothesis. A more promising ex-
planation is measurement error, which is likely to bias effect 
estimates downwards. In line with this, fig. S6 (supplemen-
tary materials, section S4.5) shows that our effect estimates 
increase substantially if we correct them for measurement er-
ror. Moreover, we show that beneficial effects concentrate 
among senior developers, while early-career developers do 
not appear to benefit much from genAI. The higher effect es-
timates reported in prior studies may, therefore, also reflect 
differences in the populations and complier samples they an-
alyzed. At the same time, the gap in benefits from genAI be-
tween senior and junior developers creates large 
uncertainties about the availability and nature of future ca-
reer and learning paths for early-career developers. 

This study has several limitations. First, our analysis fo-
cuses on software development. Although this limits its 
scope, work in this sector is uniquely amenable to quantita-
tive analysis at a level of granularity that is required to study 
how AI affects workers and their jobs. Within software, we 
focus only on Python-based open-source contributions. While 
Python is a widely used language, adoption patterns may dif-
fer in other programming ecosystems. We argue that esti-
mates derived from open-source Python code on GitHub are 
economically meaningful, because open-source software 
(OSS) underpins most commercial stacks and generates sig-
nificant value (33, 38). GitHub’s central role in collaboration, 
networking, and signaling further ties our evidence to profes-
sional activity (39, 40). Finally, that our estimates of AI use 
in the US align closely with reported AI use at leading US 
firms increases our confidence in the external validity of our 
findings. 

More generally, we also do not account for potential ex-
ternalities between co-workers or heterogeneity in productiv-
ity across firms, all of which may be relevant factors in how 
genAI affects programming activity. Beyond firms, our geo-
graphic analysis is limited to a subset of countries and it 
would be important to widen the analysis to include coun-
tries at different income levels. In the specific case of China 
— where the programming community also relies on an al-
ternative collaboration platform, Gitee (41) — there is some 
additional risk that our focus on GitHub projects distorts es-
timates. Finally, revisiting the effects of genAI, there are 
many other ways to evaluate the productivity of developers 
that heed more attention to code quality, from tracking how 
issues get resolved and code merges to implemented test cov-
erage. While feasible in principle, such analysis requires new 
data collection and careful design of metrics. We therefore 
leave questions about the effect of genAI on code quality for 
future research. 

How much value has genAI created in coding? While hard 
to answer definitively, our study offers some important pieces 
of this puzzle. Based on an analysis of detailed task surveys 
and wage statistics for about 900 different occupations, we 
estimate that the US spends between 637 and 1,063B USD on 
labor costs related to coding activities per year (supplemen-
tary materials, section S6). Assuming our estimated diffusion 
rates of 29% by the end of 2024 (based on open-source Python 
contributions) are representative of code in general, the an-
nual value generated by genAI coding assistants in the US 
would depend on how much they increase productivity. Us-
ing our own, conservative, baseline estimates, genAI would 
have increased the volume of commits by 3.6%. Assuming 
these commits reflect valuable code contributions, our calcu-
lation implies that genAI generates 23 – 38 billion USD of 
additional code per year. This estimate assumes that produc-
tivity gains are similar across programming languages. In a 
more conservative scenario, where productivity effects out-
side Python are negligible, the value of genAI would drop to 
about 17% of this figure (approximately 4 – 6 billion USD), 
using estimates of Python’s share of GitHub code (42). 

By contrast, various lab experiments (21, 37) and field ex-
periments (6) in software development all yield substantially 
larger causal effects of genAI on task completion times — ar-
guably a more relevant quantity to track than commit vol-
umes. Averaging across such studies (see materials and 
methods for details) yields an estimated 6.0%-15.7% increase 
in productivity at a 29% adoption rate. This translates into a 
range of 38-167 billion USD for the direct impact of genAI on 
US coding activities. However, these estimates ignore that 
genAI may also lead to a reduction in the market price of 
code. Because this yields cost savings for consumers of code, 
while reducing profits for suppliers (i.e., programmers/devel-
opers), factoring in such general equilibrium effects further 
widens the range of possible outcomes (supplementary mate-
rials, section S7). In the materials and methods, we show that 
this would mostly affect the upper bound of our estimates, 
with lower bounds all but unaffected. The upshot of these 
back-of-the-envelope calculations is that, although the total 
value of genAI to the US economy is uncertain, it is most 
likely substantial, on the order of at least tens of billions of 
USD. 

Given that genAI has diffused quickly beyond the US, 
global cost savings would be larger still, even if we confine 
ourselves to the software sector. Moreover, we are currently 
still in the early phases of the diffusion curve of what looks 
to be a new general purpose technology (3). Historically, 
early-stage productivity effects of general purpose technolo-
gies have been hard to identify because it takes time to inte-
grate them into firm level workflows and procedures, train 
workers and amass the complementary assets needed to fully 
exploit their potential. Based on this, we find ourselves on the 
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bullish side of the debate when it comes to the productivity 
effects of genAI. 

Our results on such effects and the heterogeneous diffu-
sion of genAI raise important questions for policymakers and 
researchers. We need to understand the barriers to AI adop-
tion: are these barriers similar to prior radical innovations 
(43) or is this era different? Additionally, these barriers need 
to be understood not only at the individual level, but also at 
the firm, regional, and national levels. Our study takes a first 
step toward answering such questions. 

Moreover, given the wide dispersion in productivity 
across developers (44–46) and our finding that benefits ac-
crue to more experienced coders only, future research should 
explore how AI adoption affects developer activity at the up-
per tail of elite developers, where the most significant break-
throughs and innovations are likely to occur (47). Finally, our 
study exclusively focused on programming tasks. Yet, one 
study of elite software developers suggests that access to 
genAI leads to a shift from managerial tasks to coding (22), 
suggesting that an important margin along which productiv-
ity effects materialize is shifts in the task composition of soft-
ware developer jobs. 

The nature of work often changes with the introduction 
of new technologies. Understanding these changes is espe-
cially difficult when the innovation in question is radical (43), 
such as the spinning jenny, transistors, or robots in the past, 
and at the same time pervasive (48). The uncertainty of the 
effects of genAI on work and labor markets is reflected in the 
wide range of attitudes researchers and policymakers take to-
ward it, ranging from utopian to skeptical and outright apoc-
alyptic. These attitudes are formed in a fast-moving context, 
and are based on incomplete evidence on the adoption and 
effects of AI. The findings in this study provide better evi-
dence of how genAI is used in a large, important, and highly 
exposed sector of the economy, as well as a way to monitor 
this in real-time going forward. Applying our AI detection 
classifier to millions of code contributions made over a six-
year period, we can confirm that AI adoption is fast, but het-
erogeneous across countries and individuals. Moreover, AI 
adoption is associated with increased activity rates in online 
software development collaborations. 

However, one of the most surprising findings was genAI 
increased experimentation with new libraries. This suggests 
genAI allowed users to advance faster to new areas of pro-
gramming, embedding new types of functionality in their 
code. This corroborates prior findings (49) that genAI in-
creases individual innovation, pushing individuals’ capabili-
ties in terms of the use of new combinations of libraries. 
However, again only experienced, senior-level users seem 
able to leverage genAI in this way, with important conse-
quences for career development and learning in the presence 
of genAI. 
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Fig. 1. Classifying code from functions written in the Python programming language as human or AI generated. 
(A) Using a collection of human generated code, we ask one LLM to describe the code in English, then another to 
implement that description as a Python function. (B) We vectorize the resulting code using GraphCodeBert, an 
embedding method that uses a code’s tokens, comments, and variable graph flow. (C) We train a neural network 
classifier combining GraphCodeBert with a classification head to predict the human/AI labels. (D) We evaluate the 
classifier on out-of-sample data and apply it to a large database of unlabeled Python functions. 
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Fig. 2. Share of AI-generated Python functions over time. (A) Share of Python functions that were 
created or substantially changed by GitHub users in the US. Vertical lines depict 95% confidence 
intervals. The plot reveals abrupt shifts in adoption coinciding with key AI-related events: the release of 
GitHub Copilot Preview, the public launch of ChatGPT, and the second wave of LLM releases (GPT4 and 
related models). (B) Adoption in China, France, Germany, India and Russia for which we sampled 2,000 
random developers per country-year (note that in China, GitHub competes with the alternative 
collaboration platform, Gitee (39)). The US curve is replicated from (A) as a point of reference. The US 
led the early adoption of genAI, followed by European nations such as France and Germany. From 2023 
onward, India rapidly catches up, whereas adoption in China and Russia progresses more slowly. 
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Fig. 3. Heterogeneity in adoption and effects. (A) Intensity of genAI use by gender inferred from GitHub user display 
names (US, 2024). (B) Intensity of genAI use by users’ GitHub tenure (US, 2024). (C) Estimated effect of genAI use 
on user activity from a user-quarter panel regression with user and quarter fixed-effects. GenAI use is associated 
with increased commit activity across all commits, multi-file commits (“Multi-File”) that navigate project 
interdependencies, and commits adding library imports (“Imports”), which we interpret as adding new features. 
GenAI is also associated with using wider ranges of libraries (“Indiv. Libs”) and of library combinations (“Combos”), 
and increased experimentation with new libraries or combinations. Results are similar when subsetting on the 5,000 
most common library combinations (“Combos (Top 5k)”) and using coarsened library categories instead of libraries 
themselves (“Combos (Groups)”). (D) However, these benefits accrue entirely to experienced developers, with no 
measurable gains for inexperienced developers. Error bars: 95% confidence intervals (standard errors clustered by 
user). 
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