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Generative coding tools promise big productivity gains, but uneven uptake could widen skill and income gaps. We train a
neural classifier to spot Al-generated Python functions in over 30 million GitHub commits by 160,097 software developers,
tracking how fast, and where, these tools take hold. Currently Al writes an estimated 29% of Python functions in the US, a
shrinking lead over other countries. We estimate quarterly output, measured in online code contributions, consequently
increased by 3.6%. Al seems to benefit experienced, senior-level developers: they increased productivity and more readily
expanded into new domains of software development. In contrast, early-career developers showed no significant benefits from
Al adoption. This may widen skill gaps and reshape future career ladders in software development.

According to proponents, artificial intelligence (AI)—in par-
ticular generative Al (genAI)—will drastically increase our
productivity and revolutionize the way we work. For instance,
genAl is expected to complement or substitute humans in an
increasing set of tasks (I). This forces individuals, firms, and
policymakers to make important decisions about the use and
regulation of genAl under major uncertainty. The stakes are
high: genAl has become widely accessible through tools such
as ChatGPT or Claude, directly complements human thinking
(2), and holds the potential of becoming a general-purpose
technology that can solve a wide variety of problems (3).

Experimental and quasi-experimental evidence so far sup-
ports the notion that genAl has transformative potential,
showing that the use of genAl leads to increases in produc-
tivity and output of individual workers in a variety of jobs (Z,
4-6). Surveys and data reported by large language model
(LLM) owners suggest that these technologies are diffusing
rapidly (7-9). Yet, estimates of the aggregate impact of Al on
gross domestic product (GDP) and employment are often
modest (10, 11), suggesting that we are far from having a clear
picture of the overall impacts of Al.

We do know that there is significant heterogeneity of
adoption, which could lead to economic divergence. Although
genAl use is widespread in the working age population, self-
reported adoption rates differ markedly across de-
mographics, seniority, work experience, and sectors (8, 9). Ev-
idence from job ads and firm websites suggests that adoption
of genAl varies across geography (12, 13). If genAl indeed sub-
stantially raises productivity, any implied barriers to adop-
tion will have significant consequences for inequality within
and across countries (14). Historically, however, macro-level
productivity effects of general-purpose technologies, such as
steam engines, dynamos, and computers, have taken long to
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materialize (4, 15-17). Together, this leads to substantial un-
certainty about the impact of genAl today.

Resolving this uncertainty requires accurately determin-
ing adoption rates, intensity of use, and productivity effects
at a global level. Surveys demonstrating demographic and
sectoral heterogeneities in genAl adoption often focus on sin-
gle countries (8, 9). Previous work comparing Al adoption in
different countries using survey data finds evidence of differ-
ences within and between countries (I18), but differences in
sample weighting and analysis periods of the surveys limit
our ability to directly compare observed rates. In the context
of genAl, respondents may under-report usage, especially at
work, to avoid judgment (19, 20). Nevertheless, surveys pro-
vide a valuable resource for understanding adoption pat-
terns. Similarly, randomized controlled trials (RCTs) (1, 4-6,
21) and natural experiments (22-24) are indispensable be-
cause they measure causal effects of genAl adoption by de-
sign. However, they typically consider individuals as
“treated” whenever they have access to genAl tools, without
quantifying the extent to which treated individuals used
genAl during the experiments. Moreover, surveys and exper-
iments tend to observe individuals over short time periods,
which limits our ability to know the dynamics of adoption
and to observe effects of adoption that materialize more
slowly.

To begin to address these gaps, we ask if we can directly
measure the adoption and intensity of use of genAl by indi-
viduals over time using machine learning instead of from
self-reported information. If so, what do such measures tell
us about the rate of adoption of genAI? Does this differ across
countries and demographics? How does genAl impact the
output individuals produce, and how do individual character-
istics such as experience moderate such effects?

(Page numbers not final at time of first release) 1

9202 ‘S0 Afenige4 uo AIsAIUN 3IS UoBaIO e 610'90us 105" mmmy/:sdny woly papeojumogd


https://science.org/
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fscience.adz9311&domain=pdf&date_stamp=2026-01-22

To answer these questions, we study genAl use at a fine-
grained level in one of its main domains of application: soft-
ware development, an important and high-value sector (25,
26) that is uniquely exposed to genAl (21, 22, 27, 28). To do
so, we design and implement a machine learning classifier to
identify code written with substantial Al assistance in over
30 million software developer contributions, also known as
commits, to open-source Python projects on GitHub. To train
this classifier, we assemble a custom training set, combining
existing sources with a procedure that generates synthetic
training data. This allows us to analyze shifting patterns of
Al-generated code at a granular level. We leverage this novel
source of micro-data to study how quickly the use of genAl in
coding diffuses in six major countries, how this diffusion re-
lates to demographic characteristics, and how it affects pro-
gramming activity in a sample of 100,097 US software
developers.

Detecting Al generated code

To collect a large dataset of coding activity, we gather all com-
mits by 100,097 US GitHub users to Python-based open-
source projects, recursively cloning all GitHub directories re-
lated to each project. Next, we add commits from a random
sample of 2,000 developers per year (60,000 developers in to-
tal) for each of five other major countries in software devel-
opment: China, France, Germany, India and Russia. We then
analyze these commits to assess the prevalence of Al-
generated code (see materials and methods).

Figure 1 describes how we classify these code contribu-
tions as either human or Al-generated. We limit this analysis
to blocks of code that represent functions to focus on a fine-
grained, self-contained, yet substantive unit of code. We first
construct a ground truth dataset (Fig. 1A), collecting Python
functions of which we are certain they were written by a hu-
man programmer/developer. To do so, we take functions
written in 2018, as they predate the release of capable genAl
models. Because programming styles evolve over time, we
add functions created in later years from the HumanEval da-
tasets for the years 2022 and 2024. To add a dataset of similar
functions but written by genAl we apply a two-step proce-
dure. First, for each human-written function we ask one LLM
to describe the function in English, specifying the type of in-
put and output of the function. Second, we feed this text to a
second LLM and request the model to generate a function
based on this description. Our use of two different LLMs —
unlike previous approaches (29)— avoids creating unneces-
sarily strong correlations between human code and its tran-
scription, while ensuring that the (synthetic) Al-generated
functions in our training data are close in functionality to the
original human-written functions.

We then train a machine learning classifier on this da-
taset. Following (30), we transform each function using
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GraphCodeBert, a pre-trained language model for code that
embeds a function into a high-dimensional vector space us-
ing its tokens, comments, and the dataflow graph of its vari-
ables (3I). The resulting vectors are fed into a classifier to
determine whether a given function was written by a human
or by genAlI (Fig. 1, B and C).

Results

The classifier performs remarkably well, achieving an out-of-
sample ROC AUC Score of 0.96 (Fig. 1D) and Average Rate of
True positives of 0.95. We apply this classifier to 5 million
functions extracted from 31 million contributions to Python
projects from the beginning of 2019 to the end of 2024 for the
full population of US-based users and the sampled users in
the five other countries (Fig. 1D). In the supplementary ma-
terials (see supplementary materials, section S2), we show
that the classifier also correctly identifies code generated by
more recent LLMs introduced after our data collection ended,
as well as code produced in real-world interactions with
LLMs, albeit with somewhat lower accuracy. Retraining the
classifier on code produced by these newer LLMs further im-
proves performance.

Figure 2A plots the AT adoption trajectory for US develop-
ers. Adoption rates sharply increase following major AI ad-
vancements, including the launches of Copilot, ChatGPT, and
second generation LLMs. Figure 2B compares the US to the
five other major countries we cover in the global race toward
Al adoption. This shows that the US took an early lead, which
it has managed to maintain ever since. About 29% of Python
functions in the US were generated by Al by the end of 2024,
closely followed by 23/24% for Germany and France. India
draws close at 20%, after having initially lagged in adoption.
In contrast, Russia and China have so far remained late
adopters.

Focusing on the full population of US developers, we find
that Al adoption rates drop with the number of years that
developers have been active on GitHub. Figure 3B shows that
whereas the most experienced developers use genAl in 27%
of their code, developers who have just joined the GitHub
platform use these tools for 37% of code. In contrast, using
(self-reported) first-name-based gender inference algorithms,
we find no difference between men and women (Fig. 3A).

To assess how genAl impacts the quantity and nature of
code that developers produce, we rely on regression models
with user and quarter-of-year fixed effects. This compares the
output — in terms of quarterly number of commits — of the
same developer at different points in time, controlling for
economy-wide trends. These models, summarized in Fig. 3C,
suggest a substantial impact of genAl on developer produc-
tivity. We find consistent effects across different sets of com-
mits: all commits, commits that modify multiple files (which
typically require navigating dependencies across scripts), and
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commits that add new libraries (which typically introduce
new functionality) to scripts. Moving from 0 to 29% genAl
usage—the estimated US adoption rate by the end of 2024—
is associated with a 3.6% increase in commit rates across all
these commit types. However, these associations with user
productivity are fully driven by senior-level users, for whom
a 29% adoption rate would imply a 6.2% increase in commit
rates (Fig. 3D). In contrast, we observe no statistically signif-
icant effects among early-career users.

Apart from increasing activity rates, Al adoption is also
associated with increased experimentation with new libraries
and combinations of libraries, which past research (32) inter-
preted as signs of innovation. Because libraries often focus on
specific types of functionality — such as visualization, natural
language processing, web interactions, or database opera-
tions — these findings suggest that genAl helps developers
expand their capabilities to new domains of software devel-
opment. At average end-of-2024 Al use rates for US develop-
ers, our models predict that developers who use genAl at the
average US end-of-2024 rate of 29% developers will imple-
ment 2.7% more extra new combinations of libraries. Results
are robust to variations in how we identify new library intro-
ductions. It is unlikely that the observed effects are due to
reflect the addition of esoteric libraries (“Al slop”): findings
do not change much if we only use the 5,000 most common
libraries or if we first group libraries into 124: coarse catego-
ries first. Moreover, fig. S6 of the supplementary materials
(see section S4.5) shows that these effects, as well as the ear-
lier productivity effects, are likely lower bounds because er-
rors in the measurement of users’ Al adoption rates bias each
of these estimates downwards.

Discussion
We set out to measure the use of genAl among software de-
velopers at the micro-level and on a global scale. Focusing on
the software development labor force, we demonstrated how
genAl has diffused and how this has affected the quantity and
nature of code that developers produce. To do so, we devel-
oped a new genAl classifier to identify Al-generated func-
tions in GitHub commits. Applied to a large dataset covering
software development activity across six major countries, we
document noticeable growth spikes in genAl-generated code
soon after key genAl releases. Yet, we also observe significant
differences between countries: the United States leads but its
advantage is narrowing, with Germany and France close be-
hind, India catching up fast, and China and Russia still lag-
ging at the end of 2024. Corroborating existing studies (8, 9),
our estimated adoption rates are higher among early-career
developers. However, unlike most previous work, we find no
significant differences between men and women.

We also find that genAl reshapes both the volume and na-
ture of programming work. Using within-developer
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variation—comparing the same developer before and after
adopting genAl—we show that AI adoption substantially in-
creases output. Developers using genAl are also more likely
to incorporate novel combinations of software libraries into
their code, suggesting they venture into new technical do-
mains (32) using unfamiliar building blocks (33). However,
both productivity and exploration gains concentrate almost
exclusively among senior-level developers. In contrast, alt-
hough early-career developers used genAl more, they do not
realize the same benefits.

Our observations that early-career developers use AI more
but get less out of it than their more experienced colleagues,
may reflect differences in how well developers utilize genAl
across a broader set of tasks. Senior-level developers will, for
instance, be quicker to interpret, and spot mistakes in, Al-
generated code. Such an interpretation is supported by (22),
who show that access to genAl allows senior developers to
spend less time on coordination activities and more time on
coding.

Our findings both replicate and extend findings from
other investigations. The current study estimates the most re-
cent adoption rates in the US at around 29%, which is re-
markably similar to adoption rates claimed for coding work
at Microsoft (34) and Amazon (35). This shows that, despite
our focus on code from open-source Python libraries, our re-
sults closely align with estimates of adoption rates from other
contexts and may generalize beyond the specific setting of
this study.

Unlike most other studies, our methodological advances
and design allow us to compare early adoption rates across
countries. Here, we find a clear and sustained lead by US de-
velopers. Use of LLMs may be lower in countries like China
and Russia because of differences in their supply of (provid-
ers such as OpenAl and Anthropic block access) and differ-
ences in demand (censorship limits local use, even though
many users connect using VPNs (36)). However, other major
countries are quickly catching up, eroding the US’ first-mover
advantage. Another feature that sets our study apart is that
existing literature typically focuses on access to genAl —
yielding reduced-form estimates of the causal effect of the so-
called intention-to-treat, not of genAl itself — or usage in con-
trolled experimental settings. In contrast, our approach al-
lows us to quantify the intensity with which this new
technology is used in real-world work activities. Finally, we
note that our cross-country evidence on genAl use comple-
ments firm-level survey work on broader Al adoption which
extends back to before the genAl era (18); while levels are not
directly comparable, both perspectives document persistent
cross-country gaps in Al use.

With respect to the productivity effects of genAl, our esti-
mates are generally smaller than those found in RCTs (6, 37)
and studies exploiting natural experiments (22, 24). In
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robustness checks (supplementary materials, section S4) we
study whether nonlinearities or threshold effects in the ben-
efits of genAl adoption can explain such discrepancies, but
find little evidence for this hypothesis. A more promising ex-
planation is measurement error, which is likely to bias effect
estimates downwards. In line with this, fig. S6 (supplemen-
tary materials, section S4.5) shows that our effect estimates
increase substantially if we correct them for measurement er-
ror. Moreover, we show that beneficial effects concentrate
among senior developers, while early-career developers do
not appear to benefit much from genAl. The higher effect es-
timates reported in prior studies may, therefore, also reflect
differences in the populations and complier samples they an-
alyzed. At the same time, the gap in benefits from genAI be-
tween senior and junior developers creates large
uncertainties about the availability and nature of future ca-
reer and learning paths for early-career developers.

This study has several limitations. First, our analysis fo-
cuses on software development. Although this limits its
scope, work in this sector is uniquely amenable to quantita-
tive analysis at a level of granularity that is required to study
how AI affects workers and their jobs. Within software, we
focus only on Python-based open-source contributions. While
Python is a widely used language, adoption patterns may dif-
fer in other programming ecosystems. We argue that esti-
mates derived from open-source Python code on GitHub are
economically meaningful, because open-source software
(OSS) underpins most commercial stacks and generates sig-
nificant value (33, 38). GitHub’s central role in collaboration,
networking, and signaling further ties our evidence to profes-
sional activity (39, 40). Finally, that our estimates of Al use
in the US align closely with reported AI use at leading US
firms increases our confidence in the external validity of our
findings.

More generally, we also do not account for potential ex-
ternalities between co-workers or heterogeneity in productiv-
ity across firms, all of which may be relevant factors in how
genAl affects programming activity. Beyond firms, our geo-
graphic analysis is limited to a subset of countries and it
would be important to widen the analysis to include coun-
tries at different income levels. In the specific case of China
— where the programming community also relies on an al-
ternative collaboration platform, Gitee (41) — there is some
additional risk that our focus on GitHub projects distorts es-
timates. Finally, revisiting the effects of genAl, there are
many other ways to evaluate the productivity of developers
that heed more attention to code quality, from tracking how
issues get resolved and code merges to implemented test cov-
erage. While feasible in principle, such analysis requires new
data collection and careful design of metrics. We therefore
leave questions about the effect of genAl on code quality for
future research.
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How much value has genAl created in coding? While hard
to answer definitively, our study offers some important pieces
of this puzzle. Based on an analysis of detailed task surveys
and wage statistics for about 900 different occupations, we
estimate that the US spends between 637 and 1,063B USD on
labor costs related to coding activities per year (supplemen-
tary materials, section S6). Assuming our estimated diffusion
rates of 29% by the end of 2024 (based on open-source Python
contributions) are representative of code in general, the an-
nual value generated by genAl coding assistants in the US
would depend on how much they increase productivity. Us-
ing our own, conservative, baseline estimates, genAl would
have increased the volume of commits by 3.6%. Assuming
these commits reflect valuable code contributions, our calcu-
lation implies that genAl generates 23 - 38 billion USD of
additional code per year. This estimate assumes that produc-
tivity gains are similar across programming languages. In a
more conservative scenario, where productivity effects out-
side Python are negligible, the value of genAlI would drop to
about 17% of this figure (approximately 4 - 6 billion USD),
using estimates of Python’s share of GitHub code (42).

By contrast, various lab experiments (21, 37) and field ex-
periments (6) in software development all yield substantially
larger causal effects of genAl on task completion times — ar-
guably a more relevant quantity to track than commit vol-
umes. Averaging across such studies (see materials and
methods for details) yields an estimated 6.0%-15.7% increase
in productivity at a 29% adoption rate. This translates into a
range of 38-167 billion USD for the direct impact of genAl on
US coding activities. However, these estimates ignore that
genAl may also lead to a reduction in the market price of
code. Because this yields cost savings for consumers of code,
while reducing profits for suppliers (i.e., programmers/devel-
opers), factoring in such general equilibrium effects further
widens the range of possible outcomes (supplementary mate-
rials, section S7). In the materials and methods, we show that
this would mostly affect the upper bound of our estimates,
with lower bounds all but unaffected. The upshot of these
back-of-the-envelope calculations is that, although the total
value of genAl to the US economy is uncertain, it is most
likely substantial, on the order of at least tens of billions of
USD.

Given that genAl has diffused quickly beyond the US,
global cost savings would be larger still, even if we confine
ourselves to the software sector. Moreover, we are currently
still in the early phases of the diffusion curve of what looks
to be a new general purpose technology (3). Historically,
early-stage productivity effects of general purpose technolo-
gies have been hard to identify because it takes time to inte-
grate them into firm level workflows and procedures, train
workers and amass the complementary assets needed to fully
exploit their potential. Based on this, we find ourselves on the
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bullish side of the debate when it comes to the productivity
effects of genAl.

Our results on such effects and the heterogeneous diffu-
sion of genAl raise important questions for policymakers and
researchers. We need to understand the barriers to Al adop-
tion: are these barriers similar to prior radical innovations
(43) or is this era different? Additionally, these barriers need
to be understood not only at the individual level, but also at
the firm, regional, and national levels. Our study takes a first
step toward answering such questions.

Moreover, given the wide dispersion in productivity
across developers (44-46) and our finding that benefits ac-
crue to more experienced coders only, future research should
explore how AI adoption affects developer activity at the up-
per tail of elite developers, where the most significant break-
throughs and innovations are likely to occur (47). Finally, our
study exclusively focused on programming tasks. Yet, one
study of elite software developers suggests that access to
genAl leads to a shift from managerial tasks to coding (22),
suggesting that an important margin along which productiv-
ity effects materialize is shifts in the task composition of soft-
ware developer jobs.

The nature of work often changes with the introduction
of new technologies. Understanding these changes is espe-
cially difficult when the innovation in question is radical (43),
such as the spinning jenny, transistors, or robots in the past,
and at the same time pervasive (48). The uncertainty of the
effects of genAl on work and labor markets is reflected in the
wide range of attitudes researchers and policymakers take to-
ward it, ranging from utopian to skeptical and outright apoc-
alyptic. These attitudes are formed in a fast-moving context,
and are based on incomplete evidence on the adoption and
effects of Al. The findings in this study provide better evi-
dence of how genAl is used in a large, important, and highly
exposed sector of the economy, as well as a way to monitor
this in real-time going forward. Applying our AI detection
classifier to millions of code contributions made over a six-
year period, we can confirm that AI adoption is fast, but het-
erogeneous across countries and individuals. Moreover, Al
adoption is associated with increased activity rates in online
software development collaborations.

However, one of the most surprising findings was genAl
increased experimentation with new libraries. This suggests
genAl allowed users to advance faster to new areas of pro-
gramming, embedding new types of functionality in their
code. This corroborates prior findings (49) that genAl in-
creases individual innovation, pushing individuals’ capabili-
ties in terms of the use of new combinations of libraries.
However, again only experienced, senior-level users seem
able to leverage genAl in this way, with important conse-
quences for career development and learning in the presence
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Fig. 1. Classifying code from functions written in the Python programming language as human or Al generated.
(A) Using a collection of human generated code, we ask one LLM to describe the code in English, then another to
implement that description as a Python function. (B) We vectorize the resulting code using GraphCodeBert, an
embedding method that uses a code’s tokens, comments, and variable graph flow. (C) We train a neural network
classifier combining GraphCodeBert with a classification head to predict the human/Al labels. (D) We evaluate the
classifier on out-of-sample data and apply it to a large database of unlabeled Python functions.
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Fig. 2. Share of Al-generated Python functions over time. (A) Share of Python functions that were
created or substantially changed by GitHub users in the US. Vertical lines depict 95% confidence
intervals. The plot reveals abrupt shifts in adoption coinciding with key Al-related events: the release of
GitHub Copilot Preview, the public launch of ChatGPT, and the second wave of LLM releases (GPT4 and
related models). (B) Adoption in China, France, Germany, India and Russia for which we sampled 2,000
random developers per country-year (note that in China, GitHub competes with the alternative
collaboration platform, Gitee (39)). The US curve is replicated from (A) as a point of reference. The US
led the early adoption of genAl, followed by European nations such as France and Germany. From 2023
onward, India rapidly catches up, whereas adoption in China and Russia progresses more slowly.
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Fig. 3. Heterogeneity in adoption and effects. (A) Intensity of genAl use by gender inferred from GitHub user display
names (US, 2024). (B) Intensity of genAl use by users’ GitHub tenure (US, 2024). (C) Estimated effect of genAl use
on user activity from a user-quarter panel regression with user and quarter fixed-effects. GenAl use is associated
with increased commit activity across all commits, multi-file commits (“Multi-File”) that navigate project
interdependencies, and commits adding library imports (“Imports™), which we interpret as adding new features.
GenAl is also associated with using wider ranges of libraries (“Indiv. Libs") and of library combinations (“Combos"),
and increased experimentation with new libraries or combinations. Results are similar when subsetting on the 5,000
most common library combinations (“Combos (Top 5k)") and using coarsened library categories instead of libraries
themselves (“Combos (Groups)”). (D) However, these benefits accrue entirely to experienced developers, with no
measurable gains for inexperienced developers. Error bars: 95% confidence intervals (standard errors clustered by
user).
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